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Interaction of a vortex ring with a single bubble:
bubble and vorticity dynamics
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The interaction of a single bubble with a single vortex ring in water has been
studied experimentally. Measurements of both the bubble dynamics and vorticity
dynamics have been done to help understand the two-way coupled problem.
The circulation strength of the vortex ring (Γ ) has been systematically varied,
while keeping the bubble diameter (Db) constant, with the bubble volume to
vortex core volume ratio (VR) also kept fixed at about 0.1. The other important
parameter in the problem is a Weber number based on the vortex ring strength
(We= 0.87ρ(Γ/2πa)2/(σ/Db); a= vortex core radius, σ = surface tension), which is
varied over a large range, We= 3–406. The interaction between the bubble and ring
for each of the We cases broadly falls into four stages. Stage I is before capture
of the bubble by the ring where the bubble is drawn into the low-pressure vortex
core, while in stage II the bubble is stretched in the azimuthal direction within the
ring and gradually broken up into a number of smaller bubbles. Following this, in
stage III the bubble break-up is complete and the resulting smaller bubbles slowly
move around the core, and finally in stage IV the bubbles escape. Apart from the
effect of the ring on the bubble, the bubble is also shown to significantly affect the
vortex ring, especially at low We (We ∼ 3). In these low-We cases, the convection
speed drops significantly compared to the base case without a bubble, while the
core appears to fragment with a resultant large decrease in enstrophy by about 50 %.
In the higher-We cases (We > 100), there are some differences in convection speed
and enstrophy, but the effects are relatively small. The most dramatic effects of the
bubble on the ring are found for thicker core rings at low We (We∼ 3) with the vortex
ring almost stopping after interacting with the bubble, and the core fragmenting into
two parts. The present idealized experiments exhibit many phenomena also seen
in bubbly turbulent flows such as reduction in enstrophy, suppression of structures,
enhancement of energy at small scales and reduction in energy at large scales. These
similarities suggest that results from the present experiments can be helpful in better
understanding interactions of bubbles with eddies in turbulent flows.

Key words: drag reduction, gas/liquid flow, vortex dynamics

1. Introduction
Bubbly turbulent flows occur in a variety of industrial, naval and geophysical

problems. Some examples of practical problems where these occur are in ship

† Email address for correspondence: raghu@mecheng.iisc.ernet.in
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hydrodynamics, transportation of oil, chemical reactors and in processes at the ocean
surface. In these applications, the bubbles in the flow interact with turbulence and/or
vortical structures present in the continuous phase, this resulting in bubble motion
and deformation and at the same time modifying the turbulence and/or the vortical
structures. The motion of bubbles in inhomogeneous flow has been extensively studied
as discussed in the review of Magnaudet & Eames (2000), who focus primarily on the
different forces acting on the bubble in such flows. Turbulence modulation due to the
presence of particles or bubbles has been reviewed by Balachandar & Eaton (2010).
They state that ‘mechanisms of turbulence modulation due to presence of second
phase and their parametric dependence are poorly understood and are wide open for
fundamental investigation’. In the present work, we investigate an idealization of this
problem, namely, the interaction of a single bubble with a single vortical structure,
namely a vortex ring, formed in the continuous phase (water).

1.1. Literature overview
The presence of a second phase (bubble) in vortical flow of the continuous phase
can have a dramatic effect on the flow field and on flow stability (see, for example,
Madavan, Deutsch & Merkle 1985; Lu, Fernández & Tryggvason 2005; Govindarajan
& Sahu 2014). Interaction of vortical structures with bubbles occurs in many
situations; examples of this include injection of microbubbles in turbulent flow
for drag reduction (Madavan et al. 1985; Sanders et al. 2006; Gils et al. 2013), tip
vortex cavitation (Arndt, Arakeri & Higuchi 1991; Choi & Ceccio 2007; Choi et al.
2009) and bubble cloud dynamics generated by breaking wind waves close to the sea
surface (Thorpe 1992). Among these examples, one that is more strongly related to
the present work is the reduction of frictional drag through gas or bubble injection,
which has recently been reviewed by Ceccio (2010) and Murai (2014). It is now
well established that drag reduction in these flows is a strong function of bubble
void fraction near the surface (Madavan et al. 1985; Sanders et al. 2006; Ceccio
2010). However, the physical mechanisms responsible for frictional drag reduction
using microbubbles in turbulent boundary layers are not yet completely understood
(Ferrante & Elghobashi 2004; Murai 2014). Broadly speaking, drag reduction by
bubbles can either be caused by direct modification of fluid properties like density
and viscosity, or through the relatively more complex interaction of bubbles with
turbulent structures within the boundary layer. Murai (2014) highlights the fact that
coherent structures present in turbulent flow can be modified by the presence of
bubbles resulting in drag reduction. Direct numerical simulations (DNS) by Ferrante
& Elghobashi (2004) and Lu et al. (2005) show that drag reduction can indeed be
attributed to the interaction of bubbles with turbulent eddies. Lu et al. (2005) also
observed that the presence of bubbles suppresses streamwise vortices and enstrophy,
which in turn reduces the wall shear stress. The experiments of Jacob et al. (2010)
showed that microbubbles resulted in a decrease of the characteristic dimension of the
turbulent scale involved in the production of kinetic energy. Gils et al. (2013) have
shown experimentally in a turbulent Taylor–Couette flow that bubble deformability is
a crucial and important mechanism for drag reduction.

Many investigators have recently shown that structures in turbulent boundary layers
are mostly in the form of hairpins (Adrian, Meinhart & Tomkins 2000; Dennis
& Nickels 2011). The interaction of bubbles with turbulent structures within the
boundary layer may therefore be thought of as the interaction of bubbles with these
hairpin structures. Hairpins in turbulent boundary layers are statistically distributed
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in the flow field, having very high number density, which adds further complexity to
the study of their interactions with bubbles. A simplified way to study the interaction
of such vortical structures with bubbles for better understanding of the underlying
physics is to study the interaction of a single vortical structure with a single bubble.
Perhaps the most simple and robust vortical structure that one can think of is a
vortex ring, which can be easily generated in the laboratory by pushing a slug of
fluid using a piston–cylinder mechanism. The vortex rings formed can have thin or
thick cores, this being indicated by a non-dimensional core radius (ε = a/R, where
a= equivalent core radius and R= vortex ring radius) (Norbury 1973). Laminar rings
typically become unstable due to the azimuthal short-wave instability of the vortex
core resulting in the formation of Kelvin waves (Widnall, Bliss & Tsai 1974), with
thicker core rings being more prone to instability, as shown by O’Farrell & Dabiri
(2012).

On the interaction of a vortex with a bubble, Magnaudet & Eames (2000) state
that only a few quantitative experiments have been attempted. Chahine (1995) in
his numerical study of a bubble interacting with a vortex observed extreme bubble
elongation and wrapping around the core region for bigger bubble sizes. Sridhar &
Katz (1999) experimentally studied the effect of a set of relatively small bubbles
on the structure of a relatively large vortex ring. They showed that under certain
conditions, a set of bubbles interacting with a vortex ring can distort the vortex
core, with the vortex core returning to the initial state after the bubbles escape
from the ring. In their experiments, the ratio of total bubble volume to vortex core
volume (VR) was very small (∼10−6). In the current study VR is of the order of
0.1, which is closer to the VR observed in the bubbly turbulent boundary layer
used for drag reduction, as will be discussed later. More recently, a few numerical
studies have attempted to understand the two-way coupling between the flow and the
bubble. Cihonski, Finn & Apte (2013) showed that the traditional two-way coupling
approach based on momentum point sources could not replicate vortex distortion,
as seen in the experiments of Sridhar & Katz (1999). They showed that it was
essential to account for local variations in the bubble volume fractions to replicate
the experimentally observed vortex core distortion. There have also been studies of
the interaction of vortex rings with a large number of microbubbles. These include
the experimental study of Uchiyama & Kusamichi (2013), and the simulations of
Ferrante & Elghobashi (2007). In the latter case, involving the interactions of a large
number of microbubbles with a Taylor–Green vortex, Ferrante & Elghobashi (2007)
observed that bubbles settle in the core of the vortex, reducing the vorticity and
enstrophy.

There have also been many studies on the break-up of a bubble in a turbulent
flow. Kolmogorov (1949) and Hinze (1955) showed in their pioneering work that
bubbles or droplets break when the ratio of either viscous or dynamic force to
surface tension force exceeds a critical value, the critical value itself being dependent
on the amount of dispersion between the two phases. Shinnar (1961) proposed from
Kolmogorov’s theory that the mean size of the droplet (or bubble) in isotropic
turbulent flow varies as We−0.6, where We is defined as the ratio of kinetic energy of
an oscillating droplet/bubble to the surface energy. In their microgravity experiments,
where turbulence is the only cause of bubble break-up, Risso & Fabre (1998) observed
that the second mode is dominant in bubble break-up. Martínez-Bazán, Montañés &
Lasheras (1999) suggest that binary break-up takes place at low We, but at larger We
tertiary break-up dominates. Revuelta (2010) has numerically studied the break-up
of a single bubble due to the induced velocity of a vortex ring, the bubble always
being outside the vortex ring. He observed binary break-up at low We, and large
deformations followed by break-up into multiple fragments at high We.
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1.2. Example interaction of a vortex ring with a bubble
In the present work, we study the idealized case of the interaction of a single
bubble with a single vortex ring. This may be thought of as a simplified case of
the interaction of bubbles with for example the hairpin structures seen in turbulent
boundary layers, or indeed of vortical structures in any turbulent flow. As part of this
study, we are interested in, and shall present results from, both the bubble dynamics
perspective and modifications induced in the vortex ring due to the interaction.

The parameters in this interaction problem comprise naturally the parameters
quantifying the vortex ring and the bubble. On the vortex ring side, this encompasses,
the circulation (Γ ), the vortex ring radius (R), the equivalent vortex core radius
(a), the latter being represented by the non-dimensional core radius (ε = a/R), and
there is also the ring Reynolds number, Re= Γ/ν (ν = kinematic viscosity). On the
bubble side, there is the equivalent spherical bubble diameter (Db) and the surface
tension (σ ) (see figure 4 for a schematical representation). In terms of the interaction
between the ring and the bubble, the two main parameters are the ratio of the
bubble volume to vortex core volume (VR = (πDb

3/6)/(2π2Ra2)), and the Weber
number (We) based on the circulation strength of the ring (Γ ). We define here We as
We= 0.87ρ(Γ/2πa)2/(σ/Db), along the lines used in Oweis et al. (2005), which may
be thought of as the ratio of the pressure difference (1P= 0.87ρ(Γ/2πa)2) between
the vortex core and the far field to the Laplace pressure (σ/Db) for a spherical bubble.
In our studies, VR is kept fixed at about 0.1, this being representative of the kind of
volume ratio (bubble volume to eddy core volume) seen in bubbly turbulent boundary
layers used in drag reduction studies, as discussed later. We is varied by changing the
circulation (Γ ), and the effect of changes in the non-dimensional core radius (ε) is
also presented. In our experiments, the vortex ring of radius R is generated by using
a piston–cylinder arrangement in water, and the bubble is generated by a capillary
connected to an air pump. The ring travels vertically upwards while interacting with
the bubble.

We begin by presenting an example interaction between a bubble and a vortex ring
to show the type of effects that can occur, before presenting more detailed results in
later sections. For this example case, the ring diameter (2R) is about 23 mm, ring core
radius (a) is about 3 mm, its circulation (Γ ) is about 245 cm2 s−1, and the bubble
size (Db) is about 6 mm, which results in a bubble to vortex core volume ratio (VR) of
about 0.1 and corresponds to a reasonably large Weber number of 131. We present in
figures 1 and 2 time sequences of the top and front view of the bubble dynamics from
two independent experiments, to get a three-dimensional perspective of the interaction.
In order to visualize the vortex ring, micron-sized air bubbles are generated at the
metallic tip of the vortex generator by electrolysis, these bubbles being much smaller
than the millimetre-sized main bubble of diameter Db. In figures 1(a) and 2(a), one
can see the bubble outside the ring just as the interactions begin. The bubble is then
entrained into the low-pressure vortex core of the ring following a spiral path, with
the bubble being elongated along the spiral path, as seen in figures 1(b) and 2(b,c).
Once the bubble enters into the core completely, it starts expanding in the azimuthal
direction along the core, as seen in figure 1(c–e) and also figure 2(d–f ). This is
followed by a contraction of the bubble in figure 1(f ) and re-expansion in figures 1(g)
and 2(h). During this time, surface perturbations can be seen to be growing on the
bubble, which leads to progressive break-up of the initial bubble. Given sufficient
time this leads to the state shown in figure 1(h) comprising a set of smaller bubbles
of roughly equal size, which does not further break up. As seen in figure 2, the ring
convects vertically upwards during this entire interaction with the convection speed,
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(a) (b) (d)

(e) ( f ) (g) (h)

(c)Vortex ring

Bubble

FIGURE 1. Time sequence of top view visualization images showing the interaction of a
single bubble with a vortex ring. In this case, the bubble diameter Db is 6 mm, the vortex
ring circulation Γ is 245 cm2 s−1 with ring Re of 29 900 and the corresponding Weber
number (We = 0.87ρ(Γ/2πa)2/(σ/Db)) is 131. The non-dimensional time (t∗ = tUc/R)
corresponding to each of the images shown is (a) 3.36, (b) 3.93, (c) 4.37, (d) 4.63,
(e) 6.09, (f ) 7.17, (g) 8.98 and (h) 12.37, where Uc and R are the convection speed and
radius of the ring before interaction with the bubble.

(a) (b) (d)

(e) ( f ) (h)

(c)

(g)

Vortex ring

Bubble

FIGURE 2. Time sequence of side view visualization images showing the interaction
of a single bubble with a vortex ring. All parameters are same as in figure 1. The
non-dimensional time (t∗ = tUc/R) is (a) 3.36, (b) 3.99, (c) 4.28, (d) 4.44, (e) 4.72,
(f ) 6.06, (g) 7.13 and (h) 8.88.

this speed being a good indicator of the coherence of the vortex ring. We shall see
later that the convection speed can be significantly reduced by the interactions.

Observation of bubble dynamics is accompanied by the measurement of the
principal azimuthal vorticity of the vortex ring using two-dimensional time-resolved
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2.25

3.00

3.75(b)

2.25

3.00

3.75
(c)

3.00

3.75

4.50

(d)

1 2 3 4

4.50

5.25

6.00(e)

0.75

1.50

2.25
(a)

1 2 3 4

5.25

6.00

( f )

FIGURE 3. (Colour online) Time sequence of principal azimuthal vorticity within the
ring measured using time-resolved PIV showing the interaction of a single bubble with
a vortex ring. In each image, the bubble is marked as a hatched area (magenta online).
Solid and dashed line contours represent positive and negative vorticity, respectively. The
non-dimensional time (t∗= tUc/R) is (a) 3.3, (b) 3.99, (c) 4.37, (d) 5.96, (e) 7.04 and (f )
8.75. All parameters are as in figures 1 and 2. Non-dimensional vorticity contour levels
(ωR/Uc) shown are ±1.57, 2.75, 3.93, . . . .

particle image velocimetry (PIV), as shown in figure 3. In these plots, the bubble
is marked as a hatched area (magenta online). Figure 3(a) shows the vortex ring
before the interactions with the bubble begin. In figure 3(b), the bubble is elongated
as it is being entrained into the ring, with significant distortion of the vortex core.
After entrainment in figure 3(c), the bubble sits in the centre of the vortex core, and
vorticity at this instant is distributed like an annulus outside the bubble. The bubble
then gets elongated azimuthally along the ring, so that the bubble cross-sectional area
reduces in the core on the left in figure 3(d), with the stretched out bubble being also
visible on the right (dashed) core in figure 3(d) with some resultant modification to
this core. Figure 3(e,f ) shows the vorticity contours for minimum azimuthal shrinkage
and maximum re-expansion of the bubble. As may be seen from this set of plots,
significant changes can occur in the vorticity distribution within the core, which can
in turn lead to a significant reduction in the convection speed of the ring, as we shall
see later. This example is indicative of the fact that the interactions of the bubble and
the vortex ring can significantly affect both of them, and it is this interaction that is
the focus of this paper.

The layout of the paper is as follows. In § 2, we present the experimental set-up
used for this study, and give details of the techniques used to make qualitative
and quantitative measurements. In § 3, we present results for the initial stages
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of interaction from both the bubble dynamics and vorticity dynamics perspective.
This includes the bubble capture, bubble expansion and vorticity field modification
processes for different vortex ring strengths (Γ ), or equivalently We. In § 4, we
present results for the later stages of interaction, where the bubble has already been
broken down into a set of smaller bubbles, and the bubble has reached a quasi-steady
state with the smaller bubbles no longer breaking up. We present here the vorticity
distribution in the cores at this later stage, including integral measures of it such as
the circulation and enstrophy. This is followed by § 5, where we present results for
the interactions of a bubble with a thicker vortex ring (ε ∼ 0.75), where the results
can be even more dramatic compared to the thinner core rings (ε ∼ 0.25) discussed
in §§ 3 and 4. The possible physical mechanisms for the observed reduction in
convection speed and fragmentation of the vortex core and the relevance of the
present experiments to drag reduction through bubble injection in turbulent flows are
discussed in § 6. Finally, in § 7, we shall present our conclusions from the study,
providing an overview of how the interaction of a bubble with a vortex ring affects
both the bubble and the vortex ring.

2. Experimental methodology

A schematic of the experimental set-up for the present study is shown in figure 4.
The experiments were conducted in a glass tank of dimensions 0.6 m×0.6 m×1.2 m.
Vortex rings were generated by actuating a piston–cylinder mechanism within water,
such that the resulting vortex ring convects vertically upwards against gravity. The ring
generator had a diameter D0, which was 15 mm for all the vortex ring cases presented
in §§ 3 and 4. The rings thus generated were relatively thin with non-dimensional core
radius (ε) of around 0.25. For the few thicker ring cases studied with ε of around 0.75
presented in § 5, a ring generator having D0 of 3 mm was used. Vortex rings were
generated by impulsively pushing out a slug of water from the generator, resulting in
a vortex ring of strength Γ , ring radius R, and vortex core radius a, these parameters
being measured from PIV velocity fields. In each case, these ring parameters were
measured from a set of about three experiments conducted in the absence of the
bubble. Γ was measured using the line integral of velocity around a large closed
loop enclosing the vortex core. The values of a and R were then determined from
the measured vertical velocity along a horizontal line passing through both the
vortex centres. Both these parameters were obtained from a least-squares fit of the
vertical velocity induced by the superposition of two Lamb–Oseen vortices with
the measured velocity in a manner similar to that of Leweke & Williamson (1998).
The non-dimensional time scale (L/D0, where L is the piston stroke length) was
always kept less than 4, such that there was no trailing jet behind the ring (Gharib,
Rambod & Shariff 1998). The circulation strength of vortex rings was varied by
changing the piston velocity. The resulting vortex ring strengths varied from 30 to
500 cm2 s−1, covering the laminar, transitional and turbulent vortex ring regimes. All
the measured parameters for the different vortex ring cases studied are summarized
in table 1, along with the corresponding non-dimensional numbers. Measurement
uncertainties associated with ring radius R, core radius a and circulation Γ are
±0.2 mm, ±0.15 mm and ±5 %, respectively.

All the interaction experiments reported with the bubble were performed after
the complete formation of the vortex ring. In order to visualize the vortex ring,
micron-sized air bubbles were generated at the metallic tip of the vortex generator by
electrolysis. These bubbles were much smaller than the millimetre-sized main bubble
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PistonAir

Electrode

Cylinder

Top view

Side view

Water tank

2a

2R

z

y
x

FIGURE 4. (Colour online) Schematic showing the experimental set-up and the main
parameters of the vortex ring and bubble. The vortex ring is generated by a piston–cylinder
mechanism with generator diameter D0. The resulting vortex ring has radius R with core
size a and convects vertically upwards with convection velocity Uc, while the bubble is
of size Db. Camera orientation for imaging and position of electrode used to visualize the
vortex ring are also indicated.

of diameter Db and the core radius a, and hence their effects on the vortex ring
were negligible. This was confirmed by comparing the convection speed of the ring
tracked with dye and with these micron-sized bubbles (both in the absence of the
main large bubble), the convection speed being within experimental error for the two
cases. The initial convection speed of the ring before interaction with the bubble was
measured from position–time information and denoted as Uc. This velocity along with
the initial ring radius R has been used to define a non-dimensional time, t∗ = tUc/R,
and non-dimensional vorticity, ωR/Uc, which are used throughout the paper to present
results.

A bubble of diameter Db was generated from a small-diameter tube connected to
an air pump, which was placed close to the vortex ring generator. Before experiments
with the vortex ring, the bubble size was measured separately from a series of zoomed-
in visualizations of the bubble immediately after detachment. From these experiments,
the (equivalent) spherical bubble diameter (Db) was calculated from measurements in
two perpendicular planes, which gave the three axis lengths of the ellipsoidal bubble.
The resulting values of equivalent bubble diameter were then averaged over about 10
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R (mm) a (mm) Γ (cm2 s−1) Uc (m s−1) ε We Re

7.3 2.2 28 0.13 0.29 3.0 3 430
9.4 2.3 98 0.31 0.24 33.3 11 900

10.4 2.6 174 0.47 0.25 82 21 200
11.5 2.9 245 0.73 0.25 131 29 900
11.7 3.1 371 0.95 0.27 263 45 200
12.1 3.4 505 1.13 0.28 406 61 500

TABLE 1. Values of measured parameters and non-dimensional numbers for the thin core
rings before interacting with a bubble. Ring generator diameter (D0) and bubble diameter
(Db) for the thin core rings are 15 mm and 6 mm, respectively.

runs to obtain the nominal Db, which typically was found to vary by less than about
1.5 % over the different runs. Db was 6 mm for the rings generated with the vortex
ring generator of D0= 15 mm, while Db was about 1.5 mm for the few cases studied
with the generator of D0 = 3 mm. In both cases, the bubbles were ellipsoidal before
the interaction with the ring, as expected, with the average large to small axis ratio,
as measured from the side view, being about 2. The bubble was released just prior
to the generation of the vortex ring using a valve in the air line. Volume ratio VR,
defined as the ratio of bubble volume to the vortex core volume, was maintained to
be of the order of 0.1 for all the experiments. The circulation of the vortex ring (Γ )
was varied as stated above, resulting in a range of Weber numbers from 3 to 406. For
all measurements, with and without bubbles, three repetitions of the experiments were
done, and the average of these is shown in plots, with error bars used to indicate the
variation between the runs.

Top and front views of the bubble–ring interaction were captured using a high-speed
Photron SA5 camera at framing rates of about 2000 f.p.s. with an exposure time of
about 1/4000 s. These two views were captured independently due to the different
illumination requirements, after ensuring that the broad features were repeatable.
Illumination for the bubble dynamics visualization was done with a high-intensity
halogen lamp. Apart from the bubble dynamics, the front view could also be directly
used to measure the vertical location of the vortex ring with time. For the purpose
of vertical location measurement of the ring, a relatively large field of view of
about 300 mm × 300 mm was used, while a zoomed-in field of view of about
50 mm × 50 mm was used to capture the details of entrainment of the bubble into
the ring.

Velocity and vorticity fields were obtained from time-resolved PIV measurements,
which were done at repetition rates of between 1000 and 5000 Hz. For this purpose,
the flow was seeded with silver-coated hollow glass spheres with a mean diameter
of about 14 µm. The seed particles were illuminated by a laser sheet from a
high-repetition double-pulsed LDY-301 Litron PIV laser with a maximum energy
of 10 mJ pulse−1. Delay between two laser pulses was typically about 0.2 ms,
determined by the requirement to keep the mean pixel displacement to be about
one-quarter of the correlation box size. PIV images were captured using a Photron
SA5 high-speed camera with a resolution of 1024 pixel × 1024 pixel. The images
obtained had scattered light from both the relatively small seed particles and the
larger bubble. The light from the bubble was masked out prior to PIV processing.
The resulting image contained only scattered light from seed particles, which was
typically unaffected by the scattered light from the bubble. In a few cases, bubble
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scattering/reflections were found to be strong, affecting the image of nearby seed
particles, and these images were not processed. The resulting images were then
processed with Dantec PIV software using adaptive correlation with two-step box size
refinement, with the final box size being 32 pixel× 32 pixel and 16 pixel× 16 pixel
for the thin and thick core rings, respectively. Correlation box overlap was maintained
at 50 % in all cases, with each box having roughly at least 6–8 particles to ensure
strong correlations.

The origin of the coordinate system is at the centre of the exit plane of the vortex
generator, as shown in figure 4. The vertical direction (upwards) is denoted by z, and
x, y are in the horizontal plane. We also use a radial coordinate r from the centre of
the vortex ring core when describing, for example, the vorticity distribution within the
core.

3. Thin core rings: initial stages of interaction

In all cases presented in this and the following section, the non-dimensional
core radius (ε) was about 0.25, which we refer to as thin, in comparison with the
thicker core ring (ε = 0.75) results presented in § 5. The vortex ring in the present
experiment convects vertically upwards, and its vertical position (z) as a function
of time (t) can easily be tracked from side view visualizations. The circulation (Γ )

of the vortex ring has been systematically varied in the experiments, while keeping
the bubble size (Db) fixed, resulting in a relatively large range of Weber numbers
(We= 0.87ρ(Γ/2πa)2/(σ/Db)) from 3 to 406.

We present in figure 5 an overview plot showing the normalized vertical position
(z/R) of the vortex ring as it interacts with the bubble for different We (or Γ ) cases.
The data (solid symbols) are plotted versus time normalized by the vortex ring time
scale (R/Uc), where Uc and R are the convection speed and radius of the baseline
ring at the initial time. Also, shown in the inset with open symbols are the data for
the respective baseline cases for the vortex ring (with same Γ ) in the absence of the
bubble. As one might expect, in the absence of the bubble, the ring location for all
the different cases studied collapses onto a single line, which also agrees well with
the viscous vortex ring model of Fukumoto & Moffatt (2000), also shown in the inset
by a dashed line. This dashed line representing the baseline cases is also shown in the
main plot for reference.

The interacting case data in the main plot include the entire time of interaction
between the vortex ring and the bubble starting from entrainment of the bubble into
the ring, bubble break-up and in some cases bubble escape from the ring. This figure
is therefore useful to delineate the different stages in the interaction, and accordingly
we demarcate four broad stages in the interaction. In stage I, at the bottom left corner
of the plot, the bubble is outside the ring, as in figure 1(a,b), and is drawn in towards
the vortex ring. Entrainment of the bubble into the ring occurs at the line demarcating
stage I and II. Within stage II, the bubble elongates in the azimuthal direction along
the core, followed by contraction and then begins to gradually break up into a set
of smaller bubbles, as in figure 1(c–g). In stage III, the break-up is complete and
the set of smaller broken bubbles slowly moves around in the azimuthal direction
within the ring (figure 1h). In some cases, as we shall see later, the bubbles eventually
escape from the ring, and this is denoted as stage IV, with the line between the two
demarcating the time of escape. It may be noted that the data shown for each of the
vortex ring cases with and without the bubble in figure 5 were obtained as an average
of three independent runs with variation between runs being indicated by error bars
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FIGURE 5. (Colour online) The vertical position (z/R) of the vortex ring as a function
of time (t∗= tUc/R) when the ring is interacting with a bubble of diameter (Db). Results
are shown for six vortex ring strengths (Γ ) represented in terms of the Weber number.
The plot is used to demarcate four stages (I–IV) during the interaction of the bubble and
vortex ring. Data for the ring interacting with the bubble are shown in the main plot with
filled symbols, with We values shown in the legend and Re values in table 1, while the
corresponding open symbols shown in the inset represent the motion of the same ring in
the absence of the bubble. The dashed line shows the Fukumoto & Moffatt (2000) viscous
ring model.

at certain locations, which is seen to be about 0.5R. The convective speed at any
given instant normalized by the initial convection speed may be easily ascertained
from figure 5 as the slope of the position–time data shown.

One of the most striking features visible from the plot is the difference between
low- and high-We interactions. In high-We cases, like We = 131 shown in figure 1,
the difference in vertical location between the vortex ring that is interacting with the
bubble (t) and the baseline ring in the absence of the bubble, represented by the
dashed line, is very small. As We is decreased, the difference in convection speed and
hence the vertical location between the interacting ring and the baseline ring increases.
In particular, in the We= 3 case, there is a very significant drop (about 30 %) in the
convection speed of the ring at later times when it is interacting with a bubble. This
is a first indication that the interaction between the bubble and the ring is having a
significant impact on the vortex ring as well. As the small We indicates, the significant
impact on the vortex ring occurs when the surface tension forces are comparable to
the inertial forces. We shall discuss this in more detail later in this section.

We shall present in the rest of this section results, from both the bubble dynamics
and vortex dynamics perspective, of the initial stages of interaction comprising stages
I and I, while stages III and IV are discussed in the next section.
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FIGURE 6. The variation of normalized capture time with Weber number. Filled circles
show experimental data and open circles data from a simple model based on a radial force
balance. Ring Reynolds number for the data points from left are 3430, 11 900, 21 200,
29 900, 45 200 and 61 500.

3.1. Bubble dynamics
We now begin by presenting results from the bubble dynamics perspective for
the initial stages of interaction comprising stages I and II. We shall present here
visualizations and analysis of the processes of bubble entrainment into the ring, and
its subsequent deformation leading to break-up, as a function of the vortex ring
strength or equivalently the Weber number (We).

3.1.1. Bubble capture by the vortex ring (stage I)
Bubble capture is the beginning of the vortex ring–bubble interaction. The low

pressure within the core of the vortex ring induces motion of the bubble into the
vortex core in a spiralling path, as seen in figures 1 and 2. During this capture
process, the bubble undergoes extreme elongation and wraps itself around the core,
before reaching an equilibrium radial position within the vortex core. This type of
bubble capture process has been observed for example in the numerical study of
Chahine (1995), and in the experiments of Sridhar & Katz (1995) and Oweis et al.
(2005).

An important quantity related to the capture process is the capture time (tc) of the
bubble. We define tc here along the lines of Oweis et al. (2005), as the time taken
for the bubble to move to a location within the core (r = a/4) from an initial radial
location r= 3a from the centre of the core (a= core radius). We have experimentally
measured this capture time from time sequences of the bubble visualization (as in
figure 2) for the different We cases, and this is shown in figure 6 by the solid symbols.
The data in the figure are normalized by the vortex ring time scale (R/Uc) and also
include error bars obtained from three repetitions of the experiment. We find as one
might expect that tc decreases as the ring circulation or We is increased.

The capture time can be modelled by doing a radial balance of the dominant forces
acting on the bubble, as done for example by Oweis et al. (2005). Along their lines,
we neglect the bubble acceleration and shear lift force in this balance, as these are
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small compared to the pressure gradient and drag-induced forces, due to the low air
density and the negligible vorticity outside the vortex core, respectively. Hence, the
radial force balance reduces to a balance between the pressure-gradient-induced force
(FP) and the drag force (FD) on the bubble outside the vortex core. Further, assuming
that the largest component of bubble velocity is in the radial direction (ub,r), the radial
force balance can be written as

ρu2
θVb

r
= 1

2
ρCD

(π

4

)
D2

bu2
b,r, (3.1)

where uθ is the azimuthal bubble velocity and Vb is the bubble volume. In our case,
where we consider a relatively thin vortex ring, the azimuthal velocity uθ may be
approximated by the induced velocity of a line Gaussian vortex. The radial velocity,
ub,r, at any given radial location (r), can then be obtained from the above radial
equilibrium equation using an appropriate expression for the drag coefficient (CD)
valid over a large range of bubble Reynolds numbers (Reb = ub,rDb/ν, where ν is
the kinematic viscosity), CD = (24/Reb)(1 + 0.197Re0.63

b + 0.00026Re1.38
b ) (Haberman

& Morton 1953). The capture time (tc) can then be found by integration of the thus
obtained radial velocity (ub,r) from an initial location, r= 3a, to r= a/4.

The above simple model is similar to that of Oweis et al. (2005), except for the
fact that we use a more complete expression for CD due to the much larger bubble
Reynolds numbers (Reb) in our study. The capture time (tc) can be evaluated from
this model, given the bubble size (Db), the vortex strength (Γ ), and its core size (a).
Shown in figure 6 in open symbols is tc evaluated using this model. As may be seen
from the figure, the qualitative trend of the values obtained from this simple model
are in reasonable agreement with the experimental values. The quantitative values
are however not close, with the model always under-predicting the experimental
values, this being similar to the case in Oweis et al. (2005). We find that at low
We, the model gives values about 25 % lower than the measured values, while at
higher We, the difference increases to about 50 %, consistent with the fact that
bubble deformations, that have not been modelled, increase with We. Besides bubble
deformations, the observed differences are also likely to be linked to other features
observed in the experiments that have not been modelled. This includes, for example,
the effects of added mass and lift forces that become more important as the bubble
approaches the vortex core (Oweis et al. 2005), apart from the fact that the bubble
modifies the vorticity distribution.

As the ring circulation, or equivalently We, is varied, the appearance (or shape) of
the captured bubble and the radial equilibrium location of the captured bubble also
change. This is illustrated in figure 7, where we present top view visualization of the
bubble after it has been captured by the vortex ring. In each case, the visualization
corresponds to an instant in time when the bubble has reached a radial equilibrium
position, with further deformation of the bubble with time being purely in the
azimuthal direction. We shall first discuss the shape and surface waves on the bubble
at this instant, and then discuss the radial equilibrium position. One can see from the
images that the bubble in figure 7(a) has a relatively smooth surface, while the bubble
in figure 7(b) has a lot of wrinkling or small-scale features, with the complete bubble
surface having a wrinkled appearance in figure 7(c). It appears that this change in
the nature of the bubble surface is linked to the vortex ring becoming unstable, as
the change in appearance corresponds well to the critical or transition Re for the
vortex ring. Based on the experimental results of Glezer (1988), and also from our
own visualizations, the critical Re for the rings occurs at Re= Γ/ν ∼ 11 000, which
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(a) (b) (c)

FIGURE 7. Bubble visualization immediately after bubble capture for different vortex ring
strengths (Γ ), and correspondingly different ring Reynolds numbers (Γ/ν): (a) Re= 3430,
We=3, t∗=4.63, (b) Re=29 900, We=131, t∗=4.44, (c) Re=61 500, We=406, t∗=3.88,
the times being with reference to figure 5. In each case shown, the bubble has reached
its radial equilibrium position. In (a), one can see that the large bubble is displaced from
the microbubbles that mark the centre of the vortex core, while in (b) and (c) the large
bubble is at the centre of the microbubbles.

corresponds to the We ∼ 33 case in our studies. Hence, the ring in figure 7(a) at
a Re = 3430 is laminar, while the cases in figures 7(b) and 7(c), corresponding to
Re well above the critical value, are turbulent. It is thus clear that the nature of the
bubble surface at capture depends on whether the ring is laminar or turbulent, with
the latter showing a wrinkled surface with much smaller-scale features.

We shall now proceed to discuss the radial location of the bubble in figure 7(a–c).
The picture in figure 7(a) is striking as it shows that the captured large bubble is
distinctly displaced from the small bubbles that presumably mark the centre of the
vortex core. It should be stressed here that the bubble shown in figure 7(a) has reached
a radial equilibrium position with further motion/deformation of the bubble occurring
only in the azimuthal direction, as may be seen from the corresponding time sequence
shown in figure 8(c,d). The fact that larger bubbles have a radial equilibrium position
away from the core has been seen earlier in the work of Sridhar & Katz (1999), who
discuss this point based on the radial force balance. As discussed by them, the radial
equilibrium location within the vortex core can be found from the balance between
the radially inward pressure-gradient-induced force (FP = ρu2

θVb/r) and the radially
outward lift force (FL = (1/2)ρCL(π/4)D2

bu2
θ), where uθ = Γ r/2πa2 is the azimuthal

velocity of the bubble, and Vb is the bubble volume. Substituting for the azimuthal
velocity into the expressions, it is clear that FP is proportional to (Γ 2rD3

b) while FL
is proportional to (Γ 2r2D2

b). Hence, as the bubble gets larger, the pressure-gradient-
induced force gets much stronger, and the balance requires that the equilibrium radial
location (r) of the bubble be larger. This of course does not take into account the
modification of the vorticity field, but gives a broad indication that larger bubbles
would have an equilibrium radial position away from the vortex centre.

As the strength of the ring increases, as in figure 7(b,c), the experimental
visualization shows that the equilibrium radial location of the bubble shifts to the
centre of the core, as marked by the smaller microbubbles. It is not possible to
explain this using the radial force balance in the form discussed above, as both FP
and FL have the same Γ 2 dependence. This is hence likely to be related to the
modification of vorticity, as suggested above, and as will be shown later in this
section. In summary, we find that at lower vortex strengths (lower We), the bubble is
displaced from the vortex centre, while at higher vortex strengths, the bubble pierces
through the vortex core and sits in the centre of the vortex.
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 8. Time sequence of bubble visualization images showing the capture and
deformation of a bubble for the low We = 3 case. The non-dimensional time (t∗)
corresponding to each image shown is (a) 3.19, (b) 4.41, (c) 4.61, (d) 4.74, (e) 6.47,
and (f ) 7.27, the times being with reference to figure 5.

3.1.2. Bubble dynamics within the vortex ring (stage II)
We shall now proceed to present results of the bubble deformation following

capture, in what we refer to as stage II (as defined in figure 5). Top view bubble
visualizations beginning from bubble capture are shown in figure 8 for the We = 3
case. Figure 8(a–c) show capture, with 8(c) being the same as figure 7(a); this figure
shows that the captured large bubble is displaced from the micron-sized bubbles that
mark the vortex core. Following capture in figure 8(c), one can see pure azimuthal
growth of the bubble in figure 8(d) showing that figure 8(c) does indeed show
the radial equilibrium position. After this, in figures 8(e) and 8(f ), one can see
further elongation of the bubble in the azimuthal direction. This elongation occurs
as a result of the azimuthal pressure difference resulting from the modified vorticity
distribution in the presence of the bubble, as discussed in more detail later in this
section. This azimuthal pressure difference stretches the bubble, which in turn leads
to gradual breaking of a small bubble from the large bubble through necking as seen
in figure 8(e,f ).

As the ring strength is increased, We increases, and the same broad features of
bubble capture and azimuthal expansion are seen. We have already discussed the
We= 131 case that was shown in figure 1, where we can see capture of the bubble
and bubble elongation as seen in the We = 3 case in figure 8. In the We = 131
case (figure 1), one can however see surface perturbations on the bubble that
are absent at lower We, which continue to grow as the bubble expands following
capture. Following expansion, the bubble also contracts azimuthally with the surface
perturbations continuing to grow. This gradually leads to the formation of a number
of small bubbles as seen in figure 1(h).

From visualizations such as those in figures 1 and 8, we can extract bubble size
information at different times. In particular, we can extract the azimuthal length of the
bubble (Lb) following capture, and this is shown in figure 9, where Lb is normalized
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1.0

0.2
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0.6

0.8

0 5 10 15 20 25 30

FIGURE 9. The variation of bubble expansion length (Lb) along the azimuthal direction
within the vortex ring with time starting from the instant of capture. The normalized
bubble expansion length (Lb/2πR) is plotted with time non-dimensionalized with an
azimuthal pressure-difference-based time scale (tp). The initial bubble expansion data for
the different We cases collapse onto a single line.

by the vortex ring circumference (2πR). It may be noted that the azimuthal bubble
expansion length shown for each of the vortex ring cases in figure 9 were obtained
as an average of three independent runs with variation between runs indicated by
error bars. In the figure, the time (t′) starts from the instant of bubble capture and is
normalized by a pressure-gradient-based time scale (tp) discussed below. The pressure
difference between the core of a single Gaussian line vortex with core size a and the
far field is 1P = {0.87ρ(Γ/2πa)2} (Oweis et al. 2005), while it is expected to be
closer to the far-field pressure when the bubble sits in the centre of the vortex core,
as discussed in more detail in the next section (see figure 11). Broadly speaking, the
bubble is thus exposed to a pressure difference in the azimuthal direction, which is of
the order of 1P= {0.87ρ(Γ/2πa)2}, that is responsible for elongation of the bubble
after capture. A time scale (tp) may be obtained from the above pressure difference,
tp = (0.87ρΓ )/(1Pπ)=π(2a)2/Γ .

In figure 9, we plot the bubble elongation data against time (t′) non-dimensionalized
by this time scale tp, and we can see that the initial azimuthal elongation (t′/tp < 4)
in all the six We cases from 3 to 406 lie nearly along a single line. The collapse of
the data for t′/tp < 4 with this non-dimensionalization does however validate the fact
that the azimuthal elongation of the bubble is indeed determined by the azimuthal
pressure difference given above. One can further see from figure 9 that the slope of
the contraction in all cases is also similar with this non-dimensionalization. One can
however see from the figure that there are differences in the data for t′/tp > 4, which
corresponds to the time after the bubble reaches its maximum elongation. For We of
3 and 33.3, the trend after first maximum bubble expansion is different compared to
higher We (We > 50). For We > 50, the trend of bubble expansion, contraction and
re-expansion is found to be nearly similar, as shown by the dashed line in the plot.

At later times, in all We cases, the bubble breaks up into smaller ones, whose
combined length is shown in the plot, and is seen to reach an approximately constant
value. It may also be seen from the figure that both the first maximum bubble
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elongation (Lb,max) at t′/tp between 4 and 7 and the final steady bubble length at
large time, increase with We at low We, and then saturate for We > 200. Lb,max
saturates at Lb/(2πR) of about 0.7, while the long time bubble length saturates at
about 0.8, both corresponding to We> 200.

3.2. Vorticity dynamics
We shall now present results from the vortex dynamics perspective for the initial
stages of interaction between the ring and the bubble comprising stages I and II.
With this in mind, we present, as in figure 3, measurements of the azimuthal vorticity
obtained from time-resolved PIV in the x–z plane cutting through the centre of the
vortex ring. The time sequence of the measured azimuthal vorticity for the We = 3
case is shown in figure 10, with the bubble in each plot being marked by a hatched
area (magenta online). In figure 10(a), the bubble is outside the vortex ring, and
the vorticity distribution of the undisturbed vortex ring can be seen. In addition,
vorticity can also be seen around the approaching bubble, as seen in rising single
bubble studies (Brücker 1999; Mougin & Magnaudet 2001). At these low We, the
vorticity shed from the bubble is of the same order as the strength of the ring and
is hence clearly visible in the vorticity plots. As the bubble gets pulled into the ring,
it elongates and pierces into the ring, as shown in figure 8(b), and in the process
distorts the vorticity distribution as shown in figure 10(b). In this low-We case, as
discussed earlier, the radial equilibrium position of the large bubble is not at the
centre of the vortex, but is displaced radially outward from the centre of the vortex
core. This may be seen in figure 10(c), where the higher vorticity contours of the
right-hand-side core are bunched to the left of the bubble, indicating that the larger
bubble is not sitting at the centre of the modified vortex core. After the bubble is
captured, it elongates in the azimuthal direction, reaching maximum expansion and
then contracts back as may be seen in figure 9. The vorticity plot corresponding
to maximum elongation is shown in figure 10(d), and figure 10(e,f ) correspond to
later times, where the bubble length (Lb) reaches a constant value as may be seen
from figure 9. There is no noticeable change in bubble size in figure 10(e,f ), as
there is not much change in the azimuthal length of the bubble after contraction.
One can also clearly see from the figures that the left-hand-side core is relatively
unaffected throughout the interaction process, as the bubble in the right-hand core is
not sufficiently stretched to reach the other side.

As We is increased, the time sequence of vorticity snapshots shows broadly similar
features, although there are some important changes as well. The vorticity time
sequence for the high We of 131 was shown earlier in figure 3. A common feature in
both the high-We case (figure 3) and the low-We case (figure 10) is the fact that the
bubble pierces through the vortex core in plot (b), distorting the vorticity distribution
as it enters the ring. Once the bubble is thus captured by the ring, the contours rejoin
and the vorticity gets distributed in an annular form around the captured bubble.
On the other hand, the differences between the high and low We cases are seen for
example in the radial location of the bubble after capture. In the high-We case, the
bubble is located roughly in the vortex centre, while in the lower-We case, the bubble
is clearly off the vortex centre, as seen earlier from the bubble dynamics in figure 7.
The other difference is seen in plots (e) and (f ) following maximum expansion of the
bubble. In the higher-We case (figure 3) the expansion of the bubble is larger, and
hence the stretched bubble, or some fragments of it, reaches the other core as well,
resulting in some noticeable distortion of the other core, unlike the lower-We case
(figure 10).
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FIGURE 10. (Colour online) Time sequence of principal azimuthal vorticity showing the
different stages of vortex ring–bubble interaction for the low We= 3 case. In each image,
the bubble is marked as a hatched area (magenta online), while the solid and dashed line
contours represent positive and negative vorticity, respectively. The non-dimensional time
(t∗) corresponding to each image is (a) 3.18, (b) 4.29, (c) 4.6, (d) 6.4, (e) 7.25 and (f )
7.8, the times being with reference to figure 5. Non-dimensional vorticity contour (ωR/Uc)
levels shown are ±1.6, 2.2, 2.9, . . . .

The pressure field around the vortex core can be calculated from knowledge of the
velocity field using the Navier–Stokes equation. This can be done by substitution of
the velocity field into the Navier–Stokes equation to determine the pressure gradient
term, which can in turn be integrated with respect to a reference pressure, say the
far-field value, to get the pressure field. As pointed out by Dabiri et al. (2013),
there are issues in doing the above calculations with experimental PIV data that
are inherently noisy, and they developed an appropriate algorithm to minimize these
issues and implemented it into a code. Utilizing this code, we have determined the
pressure field from our measured PIV velocity field, and this is shown in figure 11,
the pressure being shown in non-dimensional form, P∗ = (P − P∞)/1P, where
1P = 0.87ρ(Γ/2πa)2 is the pressure reduction at the centre of a two-dimensional
Gaussian vortex as discussed earlier and P∞ is the far-field pressure. The pressure
fields shown correspond to the We= 406 case, with the core (lowest vorticity contour)
being marked in each case by a dashed line, and the bubble by the hatched area. In
figure 11(a), the bubble is outside the ring, and the non-dimensional pressure (P∗)
in both cores is close to −0.9, indicating that the core pressures are low and close
to the values for an equivalent two-dimensional Gaussian vortex. On the other hand,
the pressure field in figure 11(b) at bubble capture is significantly modified, with the
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FIGURE 11. Contour plots of the normalized pressure distribution P∗ around the vortex
ring calculated from the measured PIV velocity field. The vortex cores are marked by a
dashed line while the bubble is indicated by the hatched region. The normalized pressure
P∗ is defined as (P−P∞)/1P, where 1P=0.87ρ(Γ/2πa)2 is the pressure reduction at the
centre of a two-dimensional Gaussian vortex. Non-dimensional time (t∗) corresponding to
(a), (b) and (c) is 1.77, 3.85 and 5.25 respectively (We= 406). As seen in (a), the pressure
P∗ at the centre of the vortex core before bubble capture is close to −1 indicating that it is
similar to an equivalent two-dimensional Gaussian vortex. In (b) and (c), one can see the
large pressure difference between the two vortex cores, with the pressure in the left-hand
core affected by the bubble being around −0.2, and that of the unaffected right-hand core
being around −0.9.

pressure in the left-hand core being much closer to the far-field pressure at −0.3,
while that in the right-hand core remains nearly unaffected with a pressure of about
−0.8. There is thus a large non-dimensional pressure difference of about 0.5 in the
azimuthal direction, which is responsible for the azimuthal elongation of the bubble,
discussed earlier. Figure 11(c) corresponds to maximum elongation of the bubble in
the azimuthal direction and hence a relatively smaller bubble radius. In this case,
the pressure in the left-hand core with the bubble is a little lower with a value of
about −0.4.

The pressure fields shown highlight the differences in pressure caused by the
distorted vorticity distribution within the core, which is broadly in an annular form
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within the water phase around the bubble. It may be noted that these pressure fields
were calculated with the fluid velocity within the bubble set to zero, thus giving no
variation in pressure within the bubble area, as one would expect in the real case due
to the much smaller density of air compared to that of water. Further, it should also
be noted here that in these cases, the change in pressure across the interface due to
surface tension is very small compared to 1P.

We have so far discussed the bubble and vorticity dynamics in stages I and II of
the ring and bubble interaction. By the end of the second stage, the bubble has been
completely broken up in to smaller bubbles, as shown for example in figure 1(h) for
the high-We case and figure 8(f ) for the low-We case. At the same instant in time,
the vorticity fields in the high- and low-We cases are shown in figures 3(f ) and 10(f ),
respectively. In both cases, the vorticity is distributed in an annular form within the
water phase, caused by the presence of the bubble in the centre. A simple and robust
measure of the integral effect of the vorticity distribution is the convection speed of
the vortex ring, which is the slope of the ring position data in figure 5. At this instant
(end of stage II), the convection speed data show a distinct difference between the
low- and high-We cases. In the high-We cases, the data for the ring with the bubble
are nearly the same as the baseline case, while in the lower-We case (We∼ 3), there
is a clear reduction in the convection speed of the ring. This is an indication of the
fact that the ring has been considerably affected by the bubble at this time.

This naturally raises the question of what could be possible mechanisms that
may be responsible for the reduction in convection speed of the ring. One possible
mechanism is related to the distorted annular vorticity field caused by bubble capture,
which occurs at the line demarcating stages I and II in figure 5. Around this time,
bubble capture occurs at a rapid rate, but there is no significant change in convection
speed at this time, as seen in figure 5. This suggests that the modified annular
vorticity distribution caused by bubble capture does not by itself directly affect the
convection speed. The reduction in convection speed may then be caused by an
instability of the modified vortex core at bubble capture (such as figure 10c), which
then gradually develops. There are a few features of this modified vortex core at
bubble capture that may be responsible for instability and reduction in the convection
speed of the ring. These include the annular form of vorticity distribution within the
water phase, and the presence of sharp density and viscosity changes at the interface.
For example, Dritschel (1986) has shown that a single annular two-dimensional
distribution of constant vorticity in an incompressible (single) phase can be unstable
to two-dimensional perturbations, which can lead to the formation of multiple vortices,
or what they refer to as ‘break-up’ of the vortex. We shall see in the next section
that this is what happens in our case, although the precise reason for it in our case
is not very clear.

4. Thin core rings: later stages of interaction
We present in this section the later stages of the bubble–vortex ring interaction

discussed in the previous section. This comprises stages III and IV as defined in
figure 5, corresponding to the quasi-steady state, with a set of broken bubbles inside
the ring, and the time after which the bubble escapes from the ring, respectively.

4.1. Bubble dynamics
The break-up of the bubble into smaller bubbles is complete by the end of stage II,
and hence there is almost no further break-up of the bubble within stage III. This
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(a) (b) (c)

FIGURE 12. A time sequence of bubble visualization within stage III. The non-
dimensional time (t∗) corresponding to (a), (b) and (c) is 12.69, 25.3 and 47.59
respectively (We= 131). As may be seen, the number of bubble fragments remains nearly
the same in all three cases. One of the smaller bubbles is marked in the first image, with
the same bubble being marked in the other two images, showing the gradual azimuthal
motion of the bubbles within the core.

stage may hence be referred to as a quasi-steady stage from the bubble dynamics
perspective. This is shown by an example time sequence of bubble visualization within
this stage in figure 12, that shows that the number of bubbles is almost the same.
One of the smaller bubbles is marked in the first image, with the same bubble being
marked in the other two images. This shows the gradual anti-clockwise azimuthal
motion of the bubbles within the core during this stage, as indicated by the arrow
in the first image.

In each of the Weber number cases studied, there is a fixed number of smaller
bubbles within stage III, as no further break-up occurs within this stage. Shown in
figure 13(a) is the number of smaller bubbles in this stage as a function of We. As
may be seen from the plot, the number of smaller bubbles formed as a result of
break-up increases with We, starting from 3 at low We, and reaching about 16 at the
higher We of 406. It should be noted that all the values shown here are a result of
the average of three experiments done for each We case, with the variation between
the three runs indicated by the error bars in the plot. Associated with this increase in
the number of smaller bubbles is a reduction in the average diameter of the bubbles
formed (Dm), which is shown in figure 13(b) normalized by the nominal bubble size
Db before entrainment. We can fit a power law to the data, and we find that the
average diameter of the formed bubbles varies as We−0.124, as shown in the figure.
This may be compared to the more-studied case of droplet/bubble break-up due to
isotropic turbulence, where Shinnar (1961) showed that the average droplet/bubble size
formed after complete break-up by isotropic turbulent flow varies as We−0.6 based on
simple arguments, We here being defined as the ratio of kinetic energy of oscillating
droplet/bubble to the surface energy.

In these cases of bubble break-up due to isotropic turbulence, as discussed by
Martínez-Bazán et al. (1999), break-up occurs as a result of the combined effects of
inertia, surface tension and turbulent energy dissipation per unit mass. Risso & Fabre
(1998) further suggest that the time response of the bubble controls the maximum
amount of energy which can be extracted from each turbulent eddy and the viscous
damping limits the energy that the bubble can accumulate during its fluctuating
deformation. This problem has received a lot of attention due to its importance
in bubbly turbulent flow where the average diameter of the completely broken-up
bubble determines the interfacial area, which in turn determines the rate of mass,
momentum and energy transfer between the two phases. Our experiments suggest
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FIGURE 13. Variation of (a) the number of bubbles, and (b) their diameter (Dm),
normalized by the nominal bubble size Db before entrainment, with We after complete
break-up of the bubble (stage III). The number of Kelvin waves seen from the
visualizations is also shown in (a), and is found to be different from the number of smaller
bubbles. The number of Rayleigh–Plateau instability waves that fit on the cylindrical
bubble is also shown in (a). The number of instability waves is close to the number
of bubbles at low We, but deviates at larger We. u, Experiment; @, Kelvin wave; E,
Rayleigh–Plateau instability.

that the exponent is different in the present idealized case of a single vortex structure
(ring) compared to Shinnar (1961), which is for isotropic turbulence. It should
be noted here that the change in exponent is not unexpected, as in the isotropic
turbulence case, the whole process of break-up is considerably more complex due to
the multi-scale nature of turbulent structures. The differences between the two can be
firstly attributed to the fact that bubble break-up in the turbulent case not only occurs
due to an intense single eddy, but also through the combined action of a succession
of different eddies (Risso & Fabre 1998). This is in addition to the obvious fact that
in the turbulent case, the broken bubbles are always exposed to eddies with smaller
scales that they can interact with, unlike in the present case.

A close-up of the bubble break-up in our present case from side visualizations is
shown in figure 14; this occurring in stage II. The visualizations show both the large
bubble being deformed within the ring, as well as the micron-sized bubbles tracking
the vortex core. The smaller bubbles tracking the core clearly show the Kelvin waves
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 14. (Colour online) Successive images of bubble break-up while interacting with
the vortex ring illustrating ‘pinch-off’ of smaller bubbles (We= 131). Necking can be seen
in (d). The non-dimensional time (t∗) corresponding to each image is (a) 4.72, (b) 4.75,
(c) 4.82, (d) 4.85, (e) 4.88 and (f ) 4.91, the times being with reference to figure 5.

in the core of the vortex ring, as discussed by Widnall et al. (1974). It is natural to
then ask whether the number of smaller bubbles is related to the number of Kelvin
waves in the ring, which can be easily counted from the visualizations, besides
getting an estimate from the theory based on the relative core size (Widnall et al.
1974). We present in figure 13(a), the number of Kelvin waves as counted from the
visualizations at each We, and it is clear that the number of Kelvin waves does not
match the average number of bubbles formed after complete break-up. The Kelvin
waves do however play some part in the break-up as seen in the images in figure 14,
where the bubble appears to break up due to these azimuthal waves, as may be seen
by following the time sequence of images. The process of necking can be seen in
figure 14(b), which develops leading to the formation of a gas bridge in figure 14(e)
and break-up in figure 14(f ). However, the number of bubbles formed after complete
break-up is clearly not determined by the Kelvin waves. Apart from the mismatch in
numbers discussed earlier, there is also a time-scale issue, as these Kelvin waves are
typically short lived as they rapidly grow and result in the ring becoming turbulent.
The complete break-up of the bubble on the other hand takes much longer.

Apart from the Kelvin waves, another possible mechanism that could determine
the average size or number of bubbles following break-up would be the classical
Rayleigh–Plateau instability of the stretched cylindrical bubble. The wavelength
corresponding to maximum growth rate for this instability is about 4.5 times the
diameter of the cylindrical bubble. In our case, if we use the minimum diameter
of the stretched bubble (dbr,min), which corresponds to the first maximum azimuthal
length (Lb,max), we can get a wavelength for each one of the different We cases, from
the data set shown in figure 9. From this wavelength, we can get both the number
of waves that can fit on a cylindrical bubble of length Lb,max and the diameter of the
corresponding broken-off bubble, as shown in figures 13(a) and 13(b), respectively
(open circles). As may be seen from the values in the plot, the number of these
waves that fit into the stretched bubble and their variation with We is in reasonable
agreement with experimental data at low We (We< 150), although it is not very close.
At We> 150, the visualized number of broken-off bubbles continues to increase, while
the number of instability waves is fixed as the bubble length and diameter saturate,
as discussed earlier with reference to figure 9. The diameter of the broken-off bubble
estimated from these waves is also shown in figure 13(b), showing a similar trend
to those seen in the experiments, although the actual values are again not very close.
It should be noted here that the number of broken bubbles seen in the experiments
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FIGURE 15. (Colour online) Comparison of principal azimuthal vorticity distribution for
a vortex ring (a) without and (b) with interactions with a bubble for We = 3 at a later
time (t∗ with reference to figure 5 is 14.67). In (b), the vorticity distribution for the ring
interacting with a bubble is markedly different from the identical ring in the absence
of a bubble shown at the same time in (a). The vortex core in (b), particularly the
one on the right with the bubble, appears fragmented with significant shedding from it.
The bubble is marked by hatched area (magenta online), while the solid and dashed line
contours represent positive and negative vorticity, respectively. Non-dimensional contour
levels shown are ±0.16, 0.32, 0.48, . . . , 1.29.

is typically larger than from the instability wavelength, and the difference increases
for We> 150, where the Re of the ring is also larger. Although the reason for this is
not very clear, the larger number of bubbles seen in the experiments may be caused
by the increased level of turbulence as the ring Re increases. In addition, differences
may be caused by the presence of rotational flow around the bubble.

4.2. Vorticity dynamics
We present here the azimuthal vorticity measurements during the later stages of
interaction between the bubble and the vortex ring. In figure 15, we present the
measured vorticity field for the We = 3 case, at non-dimensional time t∗ = 14.67,
where the convection speed of the vortex ring is substantially lower than the base
case of the vortex ring without a bubble, as may be seen from figure 5. The figure
shows both the base case, in figure 15(a), and the case with bubble interaction in
figure 15(b) with only lower level contours shown in both cases to highlight the
edges of the vortex and shedding from it. As may be seen from the figures, there is
a striking difference in the measured vorticity fields in the two cases. The vorticity
field in figure 15(a) shows a clear circular vortex core with no shedding of vorticity
from the ring, consistent with the fact that the ring is laminar. On the other hand,
the vorticity contours for the case with bubble interactions in figure 15(b) shows a
fragmented right-hand core where the bubble is present, with significant shedding of
vorticity from this core. The left-hand core is also affected, but not as significantly as
the right, but the overall convection speed of the ring has been significantly reduced
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FIGURE 16. (Colour online) Comparison of principal azimuthal vorticity distribution for
a vortex ring (a) without and (b) with interactions with a bubble for We = 406 at later
time (t∗ with reference to figure 5 is 14.02). In (b), the vorticity distribution for the
ring interacting with a bubble is again significantly different from the identical ring in
the absence of a bubble shown at the same time in (a). The main difference here is the
increased shedding from the ring. However, at this higher We, the core appears reasonably
intact with no significant deformation, unlike in the lower-We case in figure 15. The
bubble is shown as the hatched area (magenta online), while the solid and dashed line
contours represent positive and negative vorticity, respectively. Non-dimensional contour
levels shown are ±0.1, 0.21, 0.32, . . . , 1.06.

(about 30 %) as seen in figure 5. Shortly after this, the bubble escapes, leaving behind
a ring with a fragmented core that travels significantly slower. We would like to stress
here that Sridhar & Katz (1999) also noted vortex distortion in their study, but the
vortex core regained its initial undistorted state in that case once the bubble escaped.
On the other hand, the effect on the vortex core is a lasting one in our case and the
core is left in a fragmented state even after bubble escape.

In contrast to the low-We case, the vorticity distribution in the higher-We cases show
less influence of the bubble on the core, as shown in figure 16 for We= 406. As in
the low-We case, both the base ring in the absence of the bubble (in figure 16a), and
the ring after interactions with the bubble in figure 16(b) are shown. Both these fields
are shown at non-dimensional time t∗ = 14.02, where the convection speed is nearly
the same as the base ring case, as may be seen from figure 5. In this case, the base
ring vorticity field (in figure 16a) shows inherent shedding from the ring, consistent
with the fact that the ring in this case is turbulent (Gan, Dawson & Nickels 2012),
as discussed earlier. However, in the case of the ring with the bubble, as shown in
figure 16(b), one can see a significant increase in the shedding from the ring compared
to 16(a). Although the reason for this increased shedding from the vortex core with
the bubble is not completely clear, it is likely to be caused by the shedding from the
bubble present within the core, as has been discussed for example in Sridhar & Katz
(1999). Despite this increased shedding, the core appears relatively intact in this high-
We case, unlike in the lower-We case in figure 15. The convection speed in this high-
We case is also relatively unaffected, consistent with the almost intact vortex core.

The vorticity distribution within the (single) vortex core for the low-and high-We
cases is shown in figure 17 for both the ring interacting with the bubble, and the
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FIGURE 17. (Colour online) Principal azimuthal vorticity (ω) profile along a radial line
through the vortex centre for (a) We= 3, and (b) We= 406, at later non-dimensional time
(t∗) with respect to figure 5 of 14.67 for (a), and 14.02 for (b). In each case, the vorticity
profile in the absence of the bubble is shown by open symbols, while interacting case
is shown by filled symbols. The data shown correspond to the vorticity fields shown in
figures 15 and 16, respectively. All vorticity values in these plots are normalized by the
peak vorticity of the base vortex ring (ωpeak). The bubble is marked by the hatched area
(magenta online).

base case, to further highlight the differences. In figure 17(a), the vorticity distribution
along a 45◦ line through the core with the bubble is shown for the We= 3 case, as
also marked on the image in figure 15(b). The vorticity distribution is clearly quite
complex with the presence of multiple peaks: two positive vorticity peaks and one
negative vorticity peak. As expected, the base vortex core in the absence of the bubble,
shown by the dashed line, is a simple Gaussian profile. In the higher-We case shown
in figure 17(b), the vorticity is distributed in an annular way around the bubble, the
distribution being in the form of two Gaussian profiles with reduced peak vorticity.
This type of reduced peak vorticity for cases where the bubble resides within the core
is a common feature in these flows, which as we shall see below has consequences.

The convection speed of the ring is an integral effect of the vorticity distribution
within it. Hence, one way to understand the underlying physics of the reduction of
convection speed is to look at the enstrophy or volume integral of the square of the
vorticity of the vortex ring. In the current study, as two-dimensional time-resolved PIV
measurements have been done, the enstrophy (Z) is calculated as the area average
of the square of the azimuthal vorticity, this being representative of the principal
vorticity in the flow. For the purpose of enstrophy calculation, an area that is about

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 In

di
an

 In
st

itu
te

 o
f S

ci
en

ce
, o

n 
27

 D
ec

 2
01

9 
at

 1
7:

16
:0

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

25
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.256


486 N. K. Jha and R. N. Govardhan

1.0

0

0.2

0.4

0.6

0.8

1.0

1.2

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12

2 3 4 5 6 7 8 9 10 11 12

(a)

(b)

FIGURE 18. The variation of (a) enstrophy (Z) and (b) circulation (Γ ) with time for a
vortex ring interacting with a bubble and for the base ring case in the absence of the
bubble. Z and Γ are non-dimensionalized by their respective values at t= 0, and time is
non-dimensionalized by the ring time scale (R/Uc).

100 times the core area was used to ensure that all the vorticity corresponding to the
vortex ring is included. There is some variation between runs, but this is within the
experimental uncertainties, as may be seen by the variation in circulation between
time instants and the variation between repetitions of the same experiment shown
by the error bars in figure 18. Figure 18(a) shows the variation of enstrophy (Z)
with time for a low-We and a high-We case, along with their respective base ring
cases; Z is non-dimensionalized in each case by its respective initial value (Zi). In
both the base cases, in the absence of a bubble, a gradual reduction in enstrophy is
seen with time due to viscous diffusion of the core, reaching a value of about 0.8 at
tUc/R ≈ 12. In contrast, for the low-We = 3 case, the enstrophy reduction with time
is significantly enhanced in the case with a bubble. At small times, the enstrophy
reduction is similar to the base case, until tUc/R≈ 4, where there is a sharp drop in
enstrophy, due to the sudden capture of the bubble by the ring, which results in a
sharp drop in peak vorticity. Subsequently, as the bubble expands azimuthally within
the ring, the bubble diameter reduces, as may be seen in figure 9, and this leads to an
increase in enstrophy, which almost reaches the enstrophy of the base vortex ring at
tUc/R ≈ 5.4. Following this, Z/Zi reduces reasonably rapidly reaching what appears
to be an asymptotic value of about 0.4, which corresponds to a large reduction
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of about 50 % compared to the base case at the same time. As stated earlier, this
state continues even after the bubble escapes, leaving behind a less coherent vortex
ring, whose core appears fragmented as shown in figure 15. In contrast to this large
reduction in enstrophy for the low-We case, the reduction in enstrophy is relatively
small for the higher-We case of 263 also shown in figure 18(a). The enstrophy values
for this case are in fact close to the base ring case, consistent with the negligible
reduction in convection speed for this case, as may be seen from figure 5.

It should be noted here that reduction in enstrophy of a vortex due to interaction
with bubbles has been observed earlier. For example, Ferrante & Elghobashi (2007)
in their numerical study of the interaction of a Taylor–Green vortex with a large
number of entrained small bubbles report a reduction in enstrophy of around 4 %
due to the modified vorticity distribution. For a turbulent channel flow with bubbles,
Lu et al. (2005) report a large reduction of about 60 % in enstrophy in their DNS
study, with suppression of structures. They attribute the observed drag reduction to the
reduction in enstrophy and suppression of structures, with more drag reduction seen
when their Weber number is closer to 1. Gils et al. (2013), for the case of bubbles in
Taylor–Couette flow, show that the We value close to the inner wall is very important
in determining drag reduction, with more drag reduction observed when the bubbles
deform. Our results show similar reductions in enstrophy in the more basic interaction
of a single bubble with a vortex ring when We∼ 3.

The circulation of the vortex core is another integral quantity of interest. In our case,
as is typical of many experiments, we calculate the circulation as the line integral of
velocity around a sufficiently large closed curve around a core. The resulting values of
circulation for the low- and high-We cases with corresponding base cases is shown in
figure 18(b). As may be seen from the plot, there is some variation in circulation, but
this is not significant compared to the variations in time, indicating that the observed
variations are within the experimental error. Hence, at a broad level, we find that
there is no significant change in the circulation around the core of the vortex ring,
although some small variations may be present. It may be noted that Sridhar & Katz
(1999) also reported no noticeable change in circulation in their experimental study
of a ring interacting with a few smaller bubbles. On the other hand, Cihonski et al.
(2013) in their numerical study of the same case showed an increase in circulation of
about 10 %.

As discussed in the end of § 3, the convection speed of the ring was seen to have
reduced significantly in the low-We case by the end of stage II. We suggested that
this reduction could be due to a possible instability of the modified vortex core that
developed at bubble capture, with the vorticity being distributed in an annular form
around the bubble. As stated there, Dritschel (1986), for example, has shown that a
single annular two-dimensional distribution of constant vorticity in an incompressible
(single) phase can be unstable to two-dimensional perturbations, leading to the
formation of multiple vortices, which is what we observe in the present case at low
We (figure 15b). We shall see in the following section that this deformation of the
core leading to multiple vortices is even more dramatic in the thick ring case.

5. Thick core rings

In §§ 3 and 4, results for bubble interactions with a relatively thin vortex ring of
non-dimensional ring radius (ε) of 0.25 have been presented. In this section, we shall
present some results for the case of a thicker vortex ring, with ε = 0.75, interacting
with a bubble. We shall see that thicker rings, which are inherently more unstable
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(O’Farrell & Dabiri 2012), show even more dramatic effects during interactions with
a bubble, leading to clear fragmentation of the vortex core.

The thicker core rings studied here were generated using a smaller 3 mm diameter
vortex generator, as compared to the 15 mm generator used for the thin core
rings, as discussed in the experimental methods section. The bubble used here
was correspondingly of smaller size, so as to maintain the volume ratio (VR) of the
bubble to the vortex core at about 0.1, as in the previous thin core experiments. In
particular, two cases were studied: one corresponding to low We of 3, and the other
corresponding to a high We of 387, the difference between the two cases being as
before the circulation of the vortex ring. We begin as before by presenting a plot of
the vertical location of these rings for the two We cases, along with their respective
base cases, in figure 19(a). As is clear from the plot, in this thicker core case, one
can see significant reductions in convection velocity for the ring interacting with
the bubble compared to the base ring case even at higher We. This reduction in
convection speed of the ring is as before related to the effect of the bubble on the
vorticity distribution within the vortex core. This can be seen from the vorticity plots
in figure 19(b,c), which show the measured vorticity distributions for the lower We
case at later times, as marked on figure 19(a) (as c), along with the corresponding
base case, marked as (b). As is clear from the vorticity plots, the vortex core after
interaction with the bubble (in figure 19c) is dramatically modified, with each core
having completely fragmented into two, while the base ring (in figure 19b) remains
intact at the corresponding time. One can also see from the vorticity plots that the ring
after interacting with the bubble has nearly stopped at a vertical location (z/R= 14),
while the base vortex ring has in the same time traversed much further (z/R = 25)
and is continuing to move vertically upwards. These results clearly show that the
effects of the interaction of these thicker rings with a bubble are more dramatic than
for the thin core rings. This may be attributed to the inherently more unstable nature
of the thicker core rings, as discussed by O’Farrell & Dabiri (2012).

A time sequence of vorticity plots showing the interaction of the ring with the
bubble for We = 3 is shown in figure 20. In each case, we present vorticity plots
zoomed in around the core, with the vertical location being marked on the y-axis. As
may be seen from the figure, the bubble is outside the ring in figure 20(a) and is
captured by the ring in figure 20(b). In these thicker ring cases, visualizations show
that the interactions can be more complex, with the bubble in some cases jumping
between cores of the ring. As may be seen from figure 20(c–f ), the interactions of
the bubble with the ring result in large-scale deformations of the core. It appears
that the presence and motion of the bubble within the ring adds perturbations to the
vorticity field, which seems to make the vortex ring unstable, leading ultimately to the
fragmentation of the core into two pieces in figure 20(f ). By this time, the bubble has
escaped from the ring, as seen in figure 20(f ). It should also be noted that the whole
process in this thicker ring case appears to be more three-dimensional, as one might
expect.

The enstrophy (Z) as a function of time calculated, as before, as the area-averaged
square of the azimuthal vorticity, is shown in figure 21(a) for the low-We case, with
the enstrophy being non-dimensionalized by its initial value (Zi). The solid symbols
show the case for the ring interacting with the bubble, while the open symbols
show the base ring case. In this thicker ring case, the enstrophy, even for the base
ring, is seen to reduce with time due to viscous diffusion and resulting cancellation
of vorticity. This may also be seen in the corresponding circulation plot shown in
figure 21(b), where the circulation, even for the base ring, reduces with time. For
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FIGURE 19. (Colour online) (a) Vertical location (z) of the vortex ring as a function of
time for the thicker core ring for We= 3 and 387, both for the ring interacting with the
bubble and the base case without the bubble. (b,c) Vorticity plots corresponding to the
time instants marked in (a).

the ring interacting with a bubble, the enstrophy variation is qualitatively similar to
the thin core ring case shown earlier. There is first a sharp drop in the enstrophy of
the ring, when the bubble is captured by the ring. This occurs at tUc/R ≈ 4 with a
reduction of the normalized enstrophy (Z/Zi) to about 0.4, a nearly 50 % reduction
compared to the enstrophy of the base ring at the same time. This is then followed
by an increase in enstrophy that is linked to the decrease in diameter of the bubble,
which is in turn caused by the azimuthal expansion of the bubble within the ring.
Z/Zi then decreases at a rate that is more rapid than the base case, reaching values
of less than 0.1, which is again a more than 50 % reduction compared to the base
ring case at the same time. From figure 21(b), one can see that the total circulation
of the core, however, remains nearly the same as that of the base ring case. There
are some variations, but these are within the experimental uncertainties, as may be
seen by the variations in circulation between time instants and the variations between
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FIGURE 20. (Colour online) Time sequence of azimuthal vorticity for the thicker core
ring showing the different stages of vortex ring–bubble interaction for We = 3 showing
clear fragmentation of the core into two. The bubble is marked by the hatched area
(magenta online), while the solid and dashed line contours represent positive and negative
vorticity, respectively. The non-dimensional time (t∗) corresponding to each image is (a) 0,
(b) 4.06, (c) 8.36, (d) 16.72, (e) 21.73 and (f ) 28.36, the times being with reference to
figure 19(a).

repetition of the same experiment shown by the error bars in the plot. Hence, even
though there is very severe distortion and even fragmentation of the core leading to a
more than 50 % reduction in enstrophy compared to the base case at the same time,
the circulation remains nearly the same as for the base case.

In summary, we find that thicker core rings (ε = 0.75) interacting with a bubble
show more significant effects than in the thinner core case. In particular at low We,
we find that this thick core ring while interacting with a bubble fragments into two,
leading to a large drop in enstrophy with a consequent large reduction in convection
speed.

6. Discussion
We shall discuss in this section some of the possible physical mechanisms that

may be responsible for our observed decrease in convection speed of the ring and
fragmentation of the core. We shall also discuss the relation between the present
idealized configuration of a single bubble and a vortex ring and previous studies of
bubble interaction in turbulent flows, and highlight some of the similarities.

The interaction of the vortex ring with a bubble has been shown to result in
significant distortion of the vortex core and even in fragmentation of the core. This
in turn is responsible for the observed drop in convection speed and enstrophy of
the ring. These observations naturally raise the question of what could be possible
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FIGURE 21. The variation of (a) enstrophy (Z) and (b) circulation (Γ ) with time for a
vortex ring interacting with a bubble and for the base case in the absence of the bubble.
The enstrophy and circulation are non-dimensionalized by their respective values at t= 0,
and time is non-dimensionalized by the ring time scale (R/Uc).p, We= 3 (with bubble);
@, We= 3 (without bubble).

mechanisms or instabilities that may be responsible for the fragmentation of the core.
Firstly, as noted at the end of § 3, there is no observed change in convection speed of
the ring at bubble capture. This suggests that the modified vorticity distribution, with
decreased enstrophy, at bubble capture is not directly responsible for the reduction
in convection speed, which develops later. The reduction in convection speed and
fragmentation of the core may thus be attributed to an instability of the modified
vortex core formed at bubble capture.

There are a few features of this modified vortex core that may be responsible for
its instability and ultimate fragmentation. These include the annular form of vorticity
distribution within the water phase, and the presence of sharp density and viscosity
changes at the interface. In the case of a single annular two-dimensional distribution
of constant vorticity in an incompressible (single) phase, Dritschel (1986) and others
have shown that the vortex can be unstable to two-dimensional perturbations, which
can lead to fragmentation of the vortex core. Their results show that the instability
is dependent on the ratio of the inner and outer radii of the annular vortex patch,
with thinner annular regions typically being more unstable. It may also be noted that
in our low-We case, where fragmentation of the core is seen, the radial equilibrium
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position of the bubble at capture, and thereafter, is displaced from the centre of the
vortex core. This results in the symmetry (circular) of the vortex core being broken,
which could lead to a more unstable core. The sharp change in viscosity and density
at the interface could also induce instabilities. This is discussed for example in Dixit
& Govindarajan (2011) and Govindarajan & Sahu (2014), the latter showing that a
vortex with a light core having a ‘stable density’ stratification can still be unstable.
Apart from these single core instabilities, the influence of the neighbouring oppositely
signed core can also be important, as it overlays a strain field on the main vortex, as
discussed for example by Leweke & Williamson (1998) in the case of the ‘cooperative’
instability of vortex pairs. The stability analysis of O’Farrell & Dabiri (2012) further
suggests that thicker core vortex rings are inherently more prone to instability than
thinner core rings, as also observed in our study. In summary, given all the features
of the present modified vortex core at bubble capture, it is difficult to pinpoint the
instability mechanism responsible its fragmentation. It is clear that a detailed stability
analysis of the modified annular vortex core at bubble capture (figure 3c or figure 10c)
is needed and the result could be a combination of the above influences.

It is also useful to look at the interaction of the vortex ring and the bubble from
the energy perspective. In particular, we can estimate the vortex ring kinetic energy,
the buoyant energy fed by the bubble to the vortex ring during the interaction, and
surface energy extracted by the bubble from the vortex ring due to stretching of the
bubble. For example, for the thicker core ring with We = 3, where large reduction
in convection speed and enstrophy are seen, the ring kinetic energy is an order of
magnitude higher than both the buoyant energy and the surface energy. Further, it may
be noted that the buoyant energy should ideally add to the ring energy as the bubble
and ring rise, while an increase in surface energy should result in a reduction in ring
energy. However, considering that both of these are an order of magnitude smaller
than the ring energy, it is difficult to explain the reduction in convection speed of the
ring from this perspective. This again thus points to the fact that there is probably
an instability of the modified vortex core (after bubble capture) that is responsible for
both the fragmentation of the core and reduction in convection speed.

The present study of a single bubble interacting with a single vortical structure
in the form of a ring may be viewed as an idealization of the interaction of
microbubbles with turbulent structures (hairpins) in a boundary layer, as discussed
in the introduction. This raises the question of whether non-dimensional numbers
such as VR and We (based on vortex strength) used in the present study are relevant
in drag reduction studies using microbubbles. The ratio of bubble to vortex core
volume (VR) used in boundary layer drag reduction studies for example of Ferrante &
Elghobashi (2004) can be determined based on the eddy area fraction measurements
in a turbulent boundary layer of Carlier & Stanislas (2005). The above mentioned
bubble injection studies show large drag reduction of about 20 % with overall bubble
void fraction of about 0.02. Simple calculations based on Carlier & Stanislas (2005)
show that the corresponding bubble to eddy volume (VR) is about 0.12 and thus VR
values of the order of 0.1, as used in the present study, appear reasonable.

We can similarly see if the strength of the eddy structures or hairpins in turbulent
boundary layers are amenable for eddy–bubble interactions based on the present
work. From strength and length-scale measurements in boundary layers (Dennis &
Nickels 2011; Herpin et al. 2013), and a VR of 0.1, we can estimate the We values
corresponding to a bubble interacting with a hairpin (eddy) structure in a boundary
layer. Our estimations based on the above studies suggest that We would be about
10. At such We, we clearly see large reductions in enstrophy of structures in the
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present work, suggesting that the structures in turbulent boundary layers could also
be suppressed with reduction in their enstrophy while interacting with bubbles. In
spite of these similarities, one should however note that there are important differences
between the present idealized case of a single vortical structure interacting with a
bubble and of a bubble in a turbulent flow. In the latter case, the multi-scale nature of
turbulence would imply that a bubble would in fact interact with eddies of different
scales making the problem considerably more complex, and at the very least requiring
studies with a range of volume ratios (VR) to account for the many eddy sizes.

We can also make further connections between some results from the present study
and observations of bubbles in turbulent boundary layer studies. In terms of hairpin
vortices in a boundary layer, Zhou et al. (1999) showed that primary hairpin vortices
of peak vorticity above a certain threshold result in the generation of secondary hairpin
vortices. As seen in figure 17, the presence of a bubble in a vortex reduces peak
vorticity, which could be less than the threshold needed for regeneration of a hairpin,
thus resulting in a reduction of the hairpin population. This reduction in the number of
such structures could in turn result in a reduction of enstrophy and wall shear stress.
Another observation for bubbles in turbulent flow, from both numerical (Mazzitelli,
Lohse & Toschi 2003) and experimental studies (van den Berg, Luther & Lohse 2006),
is the enhancement of energy at small scales and reduction in energy at large scales.
In the present context, the increase in energy at small scales can be related to the
observed increase in shedding behind the vortex ring interacting with a bubble, as
shown in figure 15(b). On the other hand, the reduction in energy at the large scales
can be related to our observed fragmentation of the vortex core into smaller ones, as
shown in figures 15(b) and 20(f ). These connections between the present idealized
interaction of a vortex ring with a bubble and turbulent bubbly flows suggest that the
present work could be useful in understanding a variety of bubbly turbulent flows that
are used in many engineering applications.

7. Conclusion

We have studied in the present work the interaction of a single bubble with a single
vortical structure, namely, a vortex ring. This may be thought of as an idealized case
of the interaction of bubbles with a turbulent flow. In particular, we measure both
the bubble dynamics using high-speed imaging, and the vortex dynamics using
time-resolved PIV and show that each can be significantly affected by the other. The
experiments are done in water with a vortex ring generated from a piston–cylinder
mechanism that interacts with an air bubble.

Two important parameters in this problem are the ratio of the bubble volume to
vortex core volume (VR), and the circulation strength of the vortex (Γ ). The latter
can be represented in terms of a Weber number (We = 0.87ρ(Γ/2πa)2/(σ/Db)),
along the lines used in Oweis et al. (2005), which may be thought of as the ratio
of the pressure difference between the core and the far field (1P= 0.87ρ(Γ/2πa)2)
to the Laplace pressure (σ/Db) for a spherical bubble (a = vortex core radius,
Db = bubble diameter, σ = surface tension). Another parameter related to the vortex
ring is the non-dimensional core radius (ε) of the ring. In our studies, VR is kept
fixed at about 0.1, this being representative of the value seen in bubbly turbulent
boundary layers used in drag reduction studies. The Weber number, on the other
hand, is varied over a large range from 3 to 406 by changing Γ . The main study is
done for vortex rings with ε of about 0.25, while a few cases have also been done
for thicker core rings with ε of about 0.75.
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The interaction between the bubble and ring for all We cases broadly falls into four
stages, which are demarcated on an overview plot (figure 5) showing the location of
the vortex ring as it interacts with the bubble. In stage I, the bubble is outside the
vortex ring, and is pulled in towards the ring with capture of the bubble into the core
occurring at the line demarcating stages I and II. Within stage II, the bubble elongates
in the azimuthal direction along the core, and then gradually breaks up into a set of
smaller bubbles. In stage III, the break-up is complete and the set of smaller bubbles
slowly moves around in the azimuthal direction, and finally in stage IV, the bubbles
escape from the ring leaving a distorted or fragmented core.

In stage I, where the bubble is drawn into the ring in a spiralling manner, we
measure the capture time (tc), and find that it decreases significantly as We increases.
After capture, the bubble reaches an equilibrium radial location within the vortex
core, which is found to be displaced from the centre of the vortex at low We. At
higher We, the radial equilibrium location is found to be at the centre of the vortex
core, with the vorticity in the water phase being distributed in an annular form
around the bubble. The pressure distributions calculated from the velocity field show
a large azimuthal pressure difference between the core where the bubble is captured
and the other core, which is of the order of 1P = 0.87ρ(Γ/2πa)2. This pressure
difference causes stretching of the bubble in the azimuthal direction. When time is
non-dimensionalized by a time scale tp = (0.87ρΓ )/(1Pπ) = π(2a)2/Γ , based on
this pressure difference, it is found to collapse the measured elongation rates of the
bubble in the azimuthal direction.

By the end of stage II, break-up of the bubble is practically complete. The number
of resulting smaller bubbles is found to increase with We, starting from 3 at low We,
and reaching about 16 at the higher We of 406. This number of bubbles is not found
to be correlated to the measured number of Kelvin waves on the ring. Apart from
the Kelvin waves, another possible mechanism that could determine the number of
bubbles would be the classical Rayleigh–Plateau instability of the stretched cylindrical
bubble. The number of these waves that fit into the stretched bubble and their variation
with We is in reasonable agreement with experimental data at low We (We< 150). At
We> 150, the visualized number of bubbles after break-up continues to increase, while
the number of instability waves is fixed. The discrepancy between the two continues
to increase with We and is probably caused by the increased level of turbulence in
the higher strength (and Re) rings at larger We.

Associated with this increase in the number of smaller bubbles is a reduction in
the average diameter of the bubbles formed (Dm), which is found to vary as We−0.124.
This value of the exponent (−0.124) may be compared to the well-studied case of
droplet/bubble break-up due to isotropic turbulence, where Shinnar (1961) showed that
the average bubble size formed after complete break-up by isotropic turbulence varies
as We−0.6. It should be noted here that the change in exponent is not unexpected, as
in the isotropic turbulence case, the whole process of break-up is considerably more
complex due to the multi-scale nature of turbulent structures. The differences between
the two can be attributed to the fact that bubble break-up in the turbulent case can
occur through the combined action of a succession of different eddies (Risso & Fabre
1998), in addition to the fact that the bubble fragments are always exposed to eddies
with smaller scales that they can interact with. The vorticity distribution in this stage
shows that there are very significant variations between the interacting ring vorticity
distribution and the base vortex ring in the absence of the bubble, at similar times.
In particular at low We (We∼ 3), the vortex core appears fragmented with significant
shedding of vorticity from the core with the bubble, while we see a clean vortex ring
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in the base case at similar times. Correspondingly, the convection speed of the ring
drops significantly for the interacting case, and the enstrophy shows a large reduction
of about 50 %. In the higher-We cases, the drop in convection speed of the ring is very
small, and the core is not affected significantly, with almost no change in enstrophy
of the ring compared to the base case at similar times.

In the case of thicker core rings with non-dimensional core size (ε) of 0.75, we find
more dramatic effects. In this case, at low We (We∼ 3), the vortex ring interacts with
the bubble and almost comes to a stop some time after bubble capture. The vorticity
distribution at this instant shows complete fragmentation of the core into two pieces,
and a resultant drop in enstrophy of the ring by about 50 %. As in the thinner core
ring, at high We, the effects on the convection speed are not as significant as at low
We. It should be mentioned here that in the earlier study of Sridhar & Katz (1999)
for a ring interacting with a set of smaller bubbles, distortion of the core was noted,
but the core returned to its initial state after bubble escape. In the present case, where
the bubble size is larger, the core deformation and fragmentation are lasting effects,
and the ring is left in a fragmented state after bubble escape.

The drop in convection speed and fragmentation of the core seen in the present
experiments at low We do not occur at bubble capture, but at times significantly after
bubble capture. This suggests that the drop in convection speed and fragmentation of
the core may be due to an instability of the modified vorticity distribution after bubble
capture, where vorticity is in an annular form around the bubble with sharp density
and viscosity changes at the interface. This of course needs further investigation, but
it appears that stability analysis of an annular vorticity configuration with an air–
water interface would be helpful to understand the fragmentation of the vortex core.
Numerical two-phase simulations of this interaction would also be a very useful way
to better understand this interaction.

A number of connections can be made between the present experiments and the
relatively well-studied case of drag reduction through bubble injection into a turbulent
flow. The numerical simulations of Lu et al. (2005) have shown that drag reduction
in turbulent channel flow takes place only when We is sufficiently high to cause
bubble deformation, which they also link to reduction in enstrophy and suppression
of vortical structure. This point has also been emphasized by Gils et al. (2013) for
the case of bubbles in turbulent Taylor–Couette flow, who also state that significant
drag reduction takes place only when We is sufficient to cause deformation of bubbles.
In the present idealized study of a vortex ring interacting with a bubble over the We
range from 3 to 406, we find that bubble deformation occurs in all cases. However,
we find that significant reduction in enstrophy and fragmentation of the structure
occurs only when We∼ 3. Hence, the present experiments suggest that for enstrophy
reduction and drag reduction, bubble deformation alone is not sufficient. We find that
fragmentation/suppression of the structure is also important, and this is found to occur
only at low We. Another observation for bubbles in turbulent flow is the enhancement
of energy at small scales and reduction in energy at large scales (Mazzitelli et al.
2003; van den Berg et al. 2006). In the present context, the increase in energy at
small scales can be related to the observed increase in shedding behind the vortex
ring interacting with a bubble. On the other hand, the reduction in energy at the
large scales can be related to our observed fragmentation of the vortex core. These
relations between bubbly turbulent flows and the present idealized study suggest that
the present experiments could help to better understand interactions of bubbles with
turbulent flows, which occur in many practical applications.
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