
21st Australasian Fluid Mechanics Conference
Adelaide, Australia
10-13 December 2018

On the origin of the circular hydraulic jump: a differential analysis
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Abstract

It was believed that commonly seen kitchen sink circu-
lar hydraulic jumps are created due to gravity [1]. In a
recent paper, we disputed this view and through a series
of experiments and a theoretical analysis, we proved that
gravity does not play any significant role in the forma-
tion of a kitchen sink scale circular hydraulic jump [2].
For the theoretical explanation, we performed a control
volume analysis [2]. Here, we have obtain the same result
by performing a differential analysis based on the energy
equation. The energy equation in differential form, which
represents a differential element in the bulk fluid, does
not contain the surface energy term, which is only in-
troduced when the equation was integrated from bottom
to the free surface of the fluid. The conclusions remain
the same; in thin film flow, the downstream transport
of surface energy is the important term determining the
location of the hydraulic jump and gravity does not play
any significant role. The kitchen sink scale circular hy-
draulic jump are created due to surface tension where
capillary waves play the role of gravity waves in a tradi-
tional jump and delineate the transition from the super-
critical to subcritical flow in the liquid film, related to
these jumps.

Introduction

When a jet of water falls vertically from a tap on to the
base of a domestic sink, the water spreads radially out-
wards in a thin film until it reaches a radius where the
film thickness increases abruptly (see figure 1a). This
abrupt change in depth is the circular hydraulic jump. A
similar phenomenon is observed on vertical and inclined
surfaces, where the liquid film spreads radially outwards
before forming a jump. All existing theories invoke grav-
ity in the origin of the hydraulic jump [4, 3] implying
that the jump location should be sensitive to the orien-
tation of the surface. However, we observed that, under
the same flow conditions, normal impingement of a liquid
jet gives a circular hydraulic jump with the same initial
radius irrespective of the orientation of the surface. On
a horizontal surface, the jump (figure 1a) stays approxi-
mately at the same location until the liquid reaches the
edge of the plate, which changes the downstream flow and
the subsequent position of the jump. On a vertical plate,
where the spreading liquid film and gravity are coplanar,
an approximately circular hydraulic jump is formed ini-
tially (see figure 1b). The thick liquid film beyond the
hydraulic jump then drains downwards due to gravity
[5, 6, 7, 8, 9]. Similarly, when a vertical liquid jet im-
pinges onto a ceiling, a circular hydraulic jump is formed
(see figure 1c). Under the influence of gravity, the thick
liquid film beyond the hydraulic jump falls as droplets or
as a continuous film forming a water bell [10].

Figure 1, which is reproduced from Bhagat et al.(2018)
shows that in all three cases the hydraulic jump has al-
most the same radius (R ≈ 26mm). These three exper-
iments show unequivocally that gravity plays no role in
the formation of the circular hydraulic jump in a thin
liquid film and that gravity only affects the jump after it
is formed.

Watson (1964) proposed the first description of a thin-
film circular hydraulic jump (such as in a sink), incor-
porating the viscous friction in the thin liquid film and
balancing the momentum and hydrostatic pressure across
the jump [3]. Watson’s solution, which involves gravity,
is not a predictive theory since to apply the force bal-
ance, it requires experimental measurement of the liquid
film thickness downstream of the jump. Moreover, for
smaller flow rates, Watson’s balance overestimates the
jump radius by as much as 50% [11]. Bush & Aristoff
(2003) incorporated the effect of surface tension in Wat-
sons theory but argued that its influence was small as its
effect was confined to the hoop stress associated with the
increase in circumference of the jump and concluded that
surface tension is important only when jump radii are
small. They wrote “Our study demonstrates that surface
tension becomes dynamically significant when the radial
curvature force becomes comparable with the hydrostatic
pressure forces, that is, when 2/Bo becomes appreciable.
While the influence of surface tension is generally weak in
terrestrial experiments, it becomes appreciable for jumps
of small radius and height. Moreover, its influence will
be heightened dramatically in a microgravity setting, or
when internal jumps arise between immiscible fluids of
comparable density” [11].

Bohr et al.(1993) connected the inner and the outer solu-
tions for radial flow through a shock in shallow water and

obtained a scaling relation R ∼ Q5/8ν−3/8g−1/8 where
R, Q, ν, and g are the jump radius, the jet volume flux,
the fluid kinematic viscosity and gravitational accelera-
tion, respectively [4].

The experimental observations presented by Bhagat et
al.(2018) show a sharp departure from these previous
approaches [2]. Furthermore, the previous theories re-
quire information or feedback from the liquid film down-
stream of the hydraulic jump to predict its location
[4, 3], but the initially spreading liquid film does not
receive information of this nature. Accounting for ra-
dial spread, momentum, viscous force and surface ten-
sion Bhagat et al.(2018) gave a scaling relationship R ∼
Q3/4ρ1/4ν−1/4γ−1/4 and concluded that the thin film
hydraulic jumps are created due to surface tension and
gravity does not play any significant role. To obtain a
theoretical description, Bhagat et al.(2018) applied a flux
average energy balance. Here, we solve the mechanical



energy equation in differential form and obtained a sim-
ilar result.

Theory

We consider cylindrical coordinates r and z, the radial
and jet-axial coordinates, respectively, u and w the asso-
ciated velocity components (figure 2), and assume circu-
lar symmetry about the jet axis. In the boundary layer
approximation, the equations are governing steady flow
in a thin film are
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The no slip boundary conditions at the substrate and
zero shear stress condition at free surface are

u= w = 0, at z = 0, (3)

∂u

∂r
= 0, at z = h. (4)

For constant jet flow rate Q the radial velocity satisfies

2πr
∫ h
0 udz =Q

In order to analyse the jump we use the ansatz developed
by [3] for the velocity within the thin film. We write the
radial velocity as u = usf(η), η ≡ z/h(r) (0 ≤ η ≤ 1),
where η is the dimensionless thickness of the film and us
is the velocity at the free surface. Using continuity we
define the flux-average velocity ū≡ C1us by∫ h

0
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0
f(η)dη=C1usrh≡ ūrh=

Q

2π
= const.,
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where C1 =
∫ h
0 f(η)dη = 0.615 is a shape factor deter-

mined from the similarity solution.

Integrating (1) from 0 to h and using (5) yields

w = u
dh

dr
η = usf(η)h′η (6)

Writing (1) in the form
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using (7) and the circular symmetry of the system allows
the mechanical energy equation to be written as
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The mechanical energy equation (8) does not have a sur-
face energy term as the differential element of fluid does
not include the free surface. However, on integration of
(8) from z = 0 to the free surface z = h, we need to add
the surface energy term. This is calculated as follows.

The rate of change of surface energy at a radial location
r and in a differential volume 2πrh∆r is 2πγr∆r

∆t and in
the limit ∆r→ 0

2πγr
∆r

∆t
= 2πγrū. (9)

Assuming circular symmetry around the jet axis, we can
write the rate of change of surface energy per unit angle
as γrū. In the limit ∆r → 0, a balance on the flux of
surface energy across the annular control volume (figure
2), yields
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Substituting (6) in (8) and integrating the LHS of the
equation w.r.t z and adding the surface energy term,
yields
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Applying Leibniz’s integral rule yields,
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Now using the fact that usrh = constant, (13) can be
written as
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Similarly integrating the RHS of (8) w.r.t z and adding
the surface energy term from (10) yields
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Then, using relation usrh = constant implies usr
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dr =
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Finally putting together the LHS of (14) and the RHS of
(16) and using the relation ū= C1us gives
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(a) Horizontal surface; jet imping-

ing from above

(b) Vertical surface; jet impinging

horizontally

(c) Horizontal surface; jet imping-

ing from below

Figure 1: Reproduced from Bhagat et al. (2018); Hydraulic jumps caused by a water jet impinging normally on surfaces
with different orientations. In these three cases the jets are identical, produced from the same nozzle at the same flowrate,
Q= 1Lmin−1, and the radius of the jump is observed to be independent of the orientation of the surface.

Figure 2: Control volume of the differential annular volume of the liquid

Here, the Weber number and Froude number are defined
as, respectively,

We≡
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sh
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Equation (17) was solved with the initial condition ob-
tained from Watson’s analysis of the growth of the
boundary layer [3]. The boundary layer first occupies

the whole film at rbl, given by rbl
d = 0.1833 3

√
Re, where

d is the nozzle diameter and the jet Reynolds number

Re= ρUod
µ . At this location us is set equal to the mean

jet velocity. Inside the jump radius h′ remains very
small therefore, to obtain an approximate solution up-
stream of the hydraulic jump, in (17) and (18), h′ was
set to zero. From Watson solution, we can calculate∫ 1
0 f(η)3dη = 0.4 and

∫ 1
0 f
′′(η)f(η)dη = −1.179. Substi-

tuting the integrands in (17) and solving it with initial
condition at r = rbl, us = Uo provides the subsequent ra-
dial values of the surface velocity. The location where

We−1 +Fr−2 = 1, (17) becomes singular and there is
a discontinuity in the film velocity and the liquid film
thickness changes abruptly. Therefore, the condition for
hydraulic jump is,

We−1 +Fr−2 = 1. (19)

Results and discussion

Equation (19) shows that the hydraulic jump depends on
the localWe and Fr number. Bhagat et al.(2018) showed
that in case of thin-film hydraulic jump Fr remains very
high and the criterion is set by the Weber number [2].
They systematically changed the surface tension and the
viscosity of the test liquids and showed that their theory
gives excellent agreement with the experimental data. In
the present work, we compare the theoretical prediction
with the experimental data obtained for different surface
orientations (data reproduced from [2]). Figure 3 com-
pares the theoretical prediction obtained by the solution
of (17), whereas the dashed (blue) line represents the the-
oretical prediction obtained by Bhagat et al.(2018). The
two predictions overlap each other and show excellent
agreement with the experimental data.
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Figure 3: Comparison of theoretical prediction obtained
using solution of (17) (red line) with the experimental
results and obtained by Bhagat et al.(2018). The dashed
line shows Bhagat et al.’s theoretical prediction.

Conclusions

The general theoretical treatment, including gravity and
surface tension, presented in this paper show that the
condition at a circular hydraulic jump is We−1 +Fr−2 =
1. In case of thin films, gravity does not play any sig-
nificant role and the hydraulic jumps are created due
to surface tension alone and the effective condition for
a thin film hydraulic jump is We ≈ 1. This calculation
agrees with the conclusions drawn by Bhagat et al.(2018)
and with both the flux average control volume analysis
presented by Bhagat et al. and the differential analysis
presented in this paper are in agreement.
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